Fitting arbitraty function (model) with Python/Sicpy
I'm wondering if it's possible using scipy.optimize.curve_fit
or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:
def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b
Where:
def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]
python scikit-learn scipy data-fitting model-fitting
add a comment |
I'm wondering if it's possible using scipy.optimize.curve_fit
or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:
def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b
Where:
def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]
python scikit-learn scipy data-fitting model-fitting
Have you tried?
– Mstaino
17 hours ago
add a comment |
I'm wondering if it's possible using scipy.optimize.curve_fit
or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:
def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b
Where:
def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]
python scikit-learn scipy data-fitting model-fitting
I'm wondering if it's possible using scipy.optimize.curve_fit
or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:
def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b
Where:
def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]
python scikit-learn scipy data-fitting model-fitting
python scikit-learn scipy data-fitting model-fitting
asked 21 hours ago
meller92meller92
7310
7310
Have you tried?
– Mstaino
17 hours ago
add a comment |
Have you tried?
– Mstaino
17 hours ago
Have you tried?
– Mstaino
17 hours ago
Have you tried?
– Mstaino
17 hours ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54250617%2ffitting-arbitraty-function-model-with-python-sicpy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54250617%2ffitting-arbitraty-function-model-with-python-sicpy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Have you tried?
– Mstaino
17 hours ago