Fitting arbitraty function (model) with Python/Sicpy












0















I'm wondering if it's possible using scipy.optimize.curve_fit or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:



def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b


Where:



def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")

if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")

if window_len < 3:
return x

if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")

s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]

if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]









share|improve this question























  • Have you tried?

    – Mstaino
    17 hours ago
















0















I'm wondering if it's possible using scipy.optimize.curve_fit or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:



def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b


Where:



def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")

if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")

if window_len < 3:
return x

if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")

s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]

if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]









share|improve this question























  • Have you tried?

    – Mstaino
    17 hours ago














0












0








0








I'm wondering if it's possible using scipy.optimize.curve_fit or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:



def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b


Where:



def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")

if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")

if window_len < 3:
return x

if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")

s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]

if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]









share|improve this question














I'm wondering if it's possible using scipy.optimize.curve_fit or any other different out-of-the-box method to fit some arbitrary defined fuction(model) like e.g.:



def model_smooth_ramp(x, x0, x1, a, b, s):
y = np.piecewise(x, [(x < x0), (x0 <= x) * (x < x1), (x >= x1)], [0, lambda x: (x - x0) *(1/(x1-x0)), 1])
return a * smooth(y, window_len=s) + b


Where:



def smooth(x, window_len=6, window='flat'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")

if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")

if window_len < 3:
return x

if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of: 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")

s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]

if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[(int(window_len / 2 - 1)):-(int(window_len / 2))]






python scikit-learn scipy data-fitting model-fitting






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 21 hours ago









meller92meller92

7310




7310













  • Have you tried?

    – Mstaino
    17 hours ago



















  • Have you tried?

    – Mstaino
    17 hours ago

















Have you tried?

– Mstaino
17 hours ago





Have you tried?

– Mstaino
17 hours ago












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54250617%2ffitting-arbitraty-function-model-with-python-sicpy%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54250617%2ffitting-arbitraty-function-model-with-python-sicpy%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How fix org.hibernate.TransientPropertyValueException

Updating UILabel text programmatically using a function

Cloud Functions - OpenCV Videocapture Read method fails for larger files from cloud storage