Generating multiple plots with Dash












2















I'm new to Dash/Plot.ly and currently, I'm trying to reproduce the following plots (produced with matplotlib) with Dash:



enter image description here



My attempt to do so was to creat a method to generate a single figure:



def serve_prediction_plot(model, title, X, X_proj, y, y_proc, train_idx, test_idx, Z, xx, yy, x0, y0, d):

# Get train and test score from model
train_score = cross_val_score(model, X[train_idx], y_proc[train_idx]).mean()
test_score = model.score(X[test_idx], y_proc[test_idx])

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=x0,
y0=y0,
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_proj[train_idx, 0],
y=X_proj[train_idx, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y[train_idx],
marker=dict(
size=10,
color=y_proc[train_idx],
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_proj[test_idx, 0],
y=X_proj[test_idx, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y[test_idx],
marker=dict(
size=10,
symbol='triangle-up',
color=y_proc[test_idx],
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure


Which is call when building the Dash view:



def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf,
clf_name,
service.dataset.X,
service.dataset.X_proj,
service.dataset.y,
service.dataset.y_proc,
service.dataset.train_idx,
service.dataset.test_idx,
service.get_prediction(clf),
service.grid.xx,
service.grid.yy,
service.x_min,
service.y_min,
service.grid.h),
)
],
className="two columns"
) for clf_name, clf in service.classifiers.items()
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
]
),
# -------------------- Uncertainty ------------------
html.Div(
id='div=uncertainty'
)
])
])

])


However, the images are being cut off:



enter image description here



I wonder what I'm missing or how to properly achieve the desired output.
I've also tryied to plot something like this (which I'd actually think would look better on web):



image1 | image2
image3 | image4
image5 | image6


Without any luck.



MINIMAL EXAMPLE



import numpy as np

from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree",
"Random Forest"]
classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025, probability=True),
SVC(gamma=2, C=1, probability=True),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)

h = .02
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))

import plotly.graph_objs as go
import colorlover as cl

from sklearn.model_selection import cross_val_score

def serve_prediction_plot(model, title, X_train, y_train, X_test, y_test, xx, yy, d):
# Get train and test score from model
model.fit(X_train, y_train)
train_score = cross_val_score(model, X_train, y_train).mean()
test_score = model.score(X_test, y_test)

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
try:
Z = model.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
except NotImplementedError:
Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=xx.min(),
y0=yy.min(),
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_train[:, 0],
y=X_train[:, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y_train,
marker=dict(
size=10,
color=y_train,
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_test[:, 0],
y=X_test[:, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y_test,
marker=dict(
size=10,
symbol='triangle-up',
color=y_test,
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure

import dash
import dash_core_components as dcc
import dash_html_components as html

from dash.dependencies import Input, Output, State

def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf, clf_name, X_train, y_train, X_test, y_test, xx, yy, h),
)
],
className="two columns"
) for clf_name, clf in zip(names, classifiers)
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
])
])
])

])

external_css = [
# Normalize the CSS
"https://cdnjs.cloudflare.com/ajax/libs/normalize/7.0.0/normalize.min.css",
# Fonts
"https://fonts.googleapis.com/css?family=Open+Sans|Roboto",
"https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css",
# Base Stylesheet, replace this with your own base-styles.css using Rawgit
"https://rawgit.com/xhlulu/9a6e89f418ee40d02b637a429a876aa9/raw/f3ea10d53e33ece67eb681025cedc83870c9938d/base-styles.css",
# Custom Stylesheet, replace this with your own custom-styles.css using Rawgit
"https://cdn.rawgit.com/plotly/dash-svm/bb031580/custom-styles.css"
]

for css in external_css:
app.css.append_css({"external_url": css})

app.run_server(debug=True)









share|improve this question

























  • Can you add your dataset or modify the code to have a Minimal, Complete, and Verifiable example? Perhaps something like that contrib.scikit-learn.org/py-earth/auto_examples/… ?

    – Maximilian Peters
    Jan 19 at 9:49











  • @MaximilianPeters, done.

    – pceccon
    Jan 20 at 13:26
















2















I'm new to Dash/Plot.ly and currently, I'm trying to reproduce the following plots (produced with matplotlib) with Dash:



enter image description here



My attempt to do so was to creat a method to generate a single figure:



def serve_prediction_plot(model, title, X, X_proj, y, y_proc, train_idx, test_idx, Z, xx, yy, x0, y0, d):

# Get train and test score from model
train_score = cross_val_score(model, X[train_idx], y_proc[train_idx]).mean()
test_score = model.score(X[test_idx], y_proc[test_idx])

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=x0,
y0=y0,
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_proj[train_idx, 0],
y=X_proj[train_idx, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y[train_idx],
marker=dict(
size=10,
color=y_proc[train_idx],
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_proj[test_idx, 0],
y=X_proj[test_idx, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y[test_idx],
marker=dict(
size=10,
symbol='triangle-up',
color=y_proc[test_idx],
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure


Which is call when building the Dash view:



def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf,
clf_name,
service.dataset.X,
service.dataset.X_proj,
service.dataset.y,
service.dataset.y_proc,
service.dataset.train_idx,
service.dataset.test_idx,
service.get_prediction(clf),
service.grid.xx,
service.grid.yy,
service.x_min,
service.y_min,
service.grid.h),
)
],
className="two columns"
) for clf_name, clf in service.classifiers.items()
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
]
),
# -------------------- Uncertainty ------------------
html.Div(
id='div=uncertainty'
)
])
])

])


However, the images are being cut off:



enter image description here



I wonder what I'm missing or how to properly achieve the desired output.
I've also tryied to plot something like this (which I'd actually think would look better on web):



image1 | image2
image3 | image4
image5 | image6


Without any luck.



MINIMAL EXAMPLE



import numpy as np

from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree",
"Random Forest"]
classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025, probability=True),
SVC(gamma=2, C=1, probability=True),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)

h = .02
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))

import plotly.graph_objs as go
import colorlover as cl

from sklearn.model_selection import cross_val_score

def serve_prediction_plot(model, title, X_train, y_train, X_test, y_test, xx, yy, d):
# Get train and test score from model
model.fit(X_train, y_train)
train_score = cross_val_score(model, X_train, y_train).mean()
test_score = model.score(X_test, y_test)

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
try:
Z = model.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
except NotImplementedError:
Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=xx.min(),
y0=yy.min(),
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_train[:, 0],
y=X_train[:, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y_train,
marker=dict(
size=10,
color=y_train,
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_test[:, 0],
y=X_test[:, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y_test,
marker=dict(
size=10,
symbol='triangle-up',
color=y_test,
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure

import dash
import dash_core_components as dcc
import dash_html_components as html

from dash.dependencies import Input, Output, State

def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf, clf_name, X_train, y_train, X_test, y_test, xx, yy, h),
)
],
className="two columns"
) for clf_name, clf in zip(names, classifiers)
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
])
])
])

])

external_css = [
# Normalize the CSS
"https://cdnjs.cloudflare.com/ajax/libs/normalize/7.0.0/normalize.min.css",
# Fonts
"https://fonts.googleapis.com/css?family=Open+Sans|Roboto",
"https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css",
# Base Stylesheet, replace this with your own base-styles.css using Rawgit
"https://rawgit.com/xhlulu/9a6e89f418ee40d02b637a429a876aa9/raw/f3ea10d53e33ece67eb681025cedc83870c9938d/base-styles.css",
# Custom Stylesheet, replace this with your own custom-styles.css using Rawgit
"https://cdn.rawgit.com/plotly/dash-svm/bb031580/custom-styles.css"
]

for css in external_css:
app.css.append_css({"external_url": css})

app.run_server(debug=True)









share|improve this question

























  • Can you add your dataset or modify the code to have a Minimal, Complete, and Verifiable example? Perhaps something like that contrib.scikit-learn.org/py-earth/auto_examples/… ?

    – Maximilian Peters
    Jan 19 at 9:49











  • @MaximilianPeters, done.

    – pceccon
    Jan 20 at 13:26














2












2








2








I'm new to Dash/Plot.ly and currently, I'm trying to reproduce the following plots (produced with matplotlib) with Dash:



enter image description here



My attempt to do so was to creat a method to generate a single figure:



def serve_prediction_plot(model, title, X, X_proj, y, y_proc, train_idx, test_idx, Z, xx, yy, x0, y0, d):

# Get train and test score from model
train_score = cross_val_score(model, X[train_idx], y_proc[train_idx]).mean()
test_score = model.score(X[test_idx], y_proc[test_idx])

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=x0,
y0=y0,
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_proj[train_idx, 0],
y=X_proj[train_idx, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y[train_idx],
marker=dict(
size=10,
color=y_proc[train_idx],
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_proj[test_idx, 0],
y=X_proj[test_idx, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y[test_idx],
marker=dict(
size=10,
symbol='triangle-up',
color=y_proc[test_idx],
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure


Which is call when building the Dash view:



def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf,
clf_name,
service.dataset.X,
service.dataset.X_proj,
service.dataset.y,
service.dataset.y_proc,
service.dataset.train_idx,
service.dataset.test_idx,
service.get_prediction(clf),
service.grid.xx,
service.grid.yy,
service.x_min,
service.y_min,
service.grid.h),
)
],
className="two columns"
) for clf_name, clf in service.classifiers.items()
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
]
),
# -------------------- Uncertainty ------------------
html.Div(
id='div=uncertainty'
)
])
])

])


However, the images are being cut off:



enter image description here



I wonder what I'm missing or how to properly achieve the desired output.
I've also tryied to plot something like this (which I'd actually think would look better on web):



image1 | image2
image3 | image4
image5 | image6


Without any luck.



MINIMAL EXAMPLE



import numpy as np

from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree",
"Random Forest"]
classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025, probability=True),
SVC(gamma=2, C=1, probability=True),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)

h = .02
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))

import plotly.graph_objs as go
import colorlover as cl

from sklearn.model_selection import cross_val_score

def serve_prediction_plot(model, title, X_train, y_train, X_test, y_test, xx, yy, d):
# Get train and test score from model
model.fit(X_train, y_train)
train_score = cross_val_score(model, X_train, y_train).mean()
test_score = model.score(X_test, y_test)

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
try:
Z = model.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
except NotImplementedError:
Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=xx.min(),
y0=yy.min(),
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_train[:, 0],
y=X_train[:, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y_train,
marker=dict(
size=10,
color=y_train,
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_test[:, 0],
y=X_test[:, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y_test,
marker=dict(
size=10,
symbol='triangle-up',
color=y_test,
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure

import dash
import dash_core_components as dcc
import dash_html_components as html

from dash.dependencies import Input, Output, State

def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf, clf_name, X_train, y_train, X_test, y_test, xx, yy, h),
)
],
className="two columns"
) for clf_name, clf in zip(names, classifiers)
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
])
])
])

])

external_css = [
# Normalize the CSS
"https://cdnjs.cloudflare.com/ajax/libs/normalize/7.0.0/normalize.min.css",
# Fonts
"https://fonts.googleapis.com/css?family=Open+Sans|Roboto",
"https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css",
# Base Stylesheet, replace this with your own base-styles.css using Rawgit
"https://rawgit.com/xhlulu/9a6e89f418ee40d02b637a429a876aa9/raw/f3ea10d53e33ece67eb681025cedc83870c9938d/base-styles.css",
# Custom Stylesheet, replace this with your own custom-styles.css using Rawgit
"https://cdn.rawgit.com/plotly/dash-svm/bb031580/custom-styles.css"
]

for css in external_css:
app.css.append_css({"external_url": css})

app.run_server(debug=True)









share|improve this question
















I'm new to Dash/Plot.ly and currently, I'm trying to reproduce the following plots (produced with matplotlib) with Dash:



enter image description here



My attempt to do so was to creat a method to generate a single figure:



def serve_prediction_plot(model, title, X, X_proj, y, y_proc, train_idx, test_idx, Z, xx, yy, x0, y0, d):

# Get train and test score from model
train_score = cross_val_score(model, X[train_idx], y_proc[train_idx]).mean()
test_score = model.score(X[test_idx], y_proc[test_idx])

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=x0,
y0=y0,
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_proj[train_idx, 0],
y=X_proj[train_idx, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y[train_idx],
marker=dict(
size=10,
color=y_proc[train_idx],
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_proj[test_idx, 0],
y=X_proj[test_idx, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y[test_idx],
marker=dict(
size=10,
symbol='triangle-up',
color=y_proc[test_idx],
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure


Which is call when building the Dash view:



def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf,
clf_name,
service.dataset.X,
service.dataset.X_proj,
service.dataset.y,
service.dataset.y_proc,
service.dataset.train_idx,
service.dataset.test_idx,
service.get_prediction(clf),
service.grid.xx,
service.grid.yy,
service.x_min,
service.y_min,
service.grid.h),
)
],
className="two columns"
) for clf_name, clf in service.classifiers.items()
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
]
),
# -------------------- Uncertainty ------------------
html.Div(
id='div=uncertainty'
)
])
])

])


However, the images are being cut off:



enter image description here



I wonder what I'm missing or how to properly achieve the desired output.
I've also tryied to plot something like this (which I'd actually think would look better on web):



image1 | image2
image3 | image4
image5 | image6


Without any luck.



MINIMAL EXAMPLE



import numpy as np

from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree",
"Random Forest"]
classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025, probability=True),
SVC(gamma=2, C=1, probability=True),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)

h = .02
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))

import plotly.graph_objs as go
import colorlover as cl

from sklearn.model_selection import cross_val_score

def serve_prediction_plot(model, title, X_train, y_train, X_test, y_test, xx, yy, d):
# Get train and test score from model
model.fit(X_train, y_train)
train_score = cross_val_score(model, X_train, y_train).mean()
test_score = model.score(X_test, y_test)

# Colorscale
bright_cscale = [[0, '#FF0000'], [1, '#0000FF']]
colorscale_zip = zip(np.arange(0, 1.01, 1 / 8), cl.scales['9']['div']['RdBu'])
cscale = list(map(list, colorscale_zip))

axis_template = dict(
showgrid=False,
zeroline=False,
linecolor='white',
showticklabels=False,
ticks=''
)

layout = dict(
title=title,
xaxis=axis_template,
yaxis=axis_template,
showlegend=False,
hovermode='closest',
autosize=False,
margin=dict(l=0, r=0, t=30, b=0)
)

# Plot the prediction contour of the models
try:
Z = model.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
except NotImplementedError:
Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
print(Z.shape)
trace0 = go.Heatmap(
z=Z,
hoverinfo='none',
showscale=False,
colorscale=cscale,
x0=xx.min(),
y0=yy.min(),
dx=d,
dy=d
)

# Plot Training Data
trace1 = go.Scatter(
x=X_train[:, 0],
y=X_train[:, 1],
mode='markers',
name='Training Data (accuracy={:.3f})'.format(train_score),
text=y_train,
marker=dict(
size=10,
color=y_train,
colorscale=bright_cscale,
line=dict(
width=1
)
)
)

# Plot Test Data
trace2 = go.Scatter(
x=X_test[:, 0],
y=X_test[:, 1],
mode='markers',
name='Test Data (accuracy={:.3f})'.format(train_score),
text=y_test,
marker=dict(
size=10,
symbol='triangle-up',
color=y_test,
colorscale=bright_cscale,
line=dict(
width=1
),
)
)

data = [trace0, trace1, trace2]
figure = go.Figure(data=data, layout=layout)

return figure

import dash
import dash_core_components as dcc
import dash_html_components as html

from dash.dependencies import Input, Output, State

def generate_dense_maps():

return html.Div(
className='row',
style={
'margin-top': '5px',

# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none'
},
children=[
html.Div(
[
dcc.Graph(
id='graph-{name}'.format(name=clf_name),
figure=serve_prediction_plot(clf, clf_name, X_train, y_train, X_test, y_test, xx, yy, h),
)
],
className="two columns"
) for clf_name, clf in zip(names, classifiers)
]
)


# -------------------- Dash --------------------
app = dash.Dash(__name__)

app.layout = html.Div(children=[
# -------------------- Title Bar --------------------
html.Div(className="banner", children=[
html.Div(className='container scalable', children=[
html.H2(html.A(
'Title goes here',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),

html.A(
html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"),
href='https://plot.ly/products/dash/'
)
]),
]),

# -------------------- Body -------------------------
html.Div(id='body', className='container scalable', children=[
html.Div(className='row', children=[
# -------------------- Classifiers ------------------
html.Div(
id='div-classifiers', children=[
html.H4(html.A(
'Classifiers',
style={
'text-decoration': 'none',
'color': 'inherit'
}
)),
generate_dense_maps()
])
])
])

])

external_css = [
# Normalize the CSS
"https://cdnjs.cloudflare.com/ajax/libs/normalize/7.0.0/normalize.min.css",
# Fonts
"https://fonts.googleapis.com/css?family=Open+Sans|Roboto",
"https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css",
# Base Stylesheet, replace this with your own base-styles.css using Rawgit
"https://rawgit.com/xhlulu/9a6e89f418ee40d02b637a429a876aa9/raw/f3ea10d53e33ece67eb681025cedc83870c9938d/base-styles.css",
# Custom Stylesheet, replace this with your own custom-styles.css using Rawgit
"https://cdn.rawgit.com/plotly/dash-svm/bb031580/custom-styles.css"
]

for css in external_css:
app.css.append_css({"external_url": css})

app.run_server(debug=True)






python matplotlib plotly dash






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 20 at 13:25







pceccon

















asked Jan 18 at 16:14









pcecconpceccon

2,676104387




2,676104387













  • Can you add your dataset or modify the code to have a Minimal, Complete, and Verifiable example? Perhaps something like that contrib.scikit-learn.org/py-earth/auto_examples/… ?

    – Maximilian Peters
    Jan 19 at 9:49











  • @MaximilianPeters, done.

    – pceccon
    Jan 20 at 13:26



















  • Can you add your dataset or modify the code to have a Minimal, Complete, and Verifiable example? Perhaps something like that contrib.scikit-learn.org/py-earth/auto_examples/… ?

    – Maximilian Peters
    Jan 19 at 9:49











  • @MaximilianPeters, done.

    – pceccon
    Jan 20 at 13:26

















Can you add your dataset or modify the code to have a Minimal, Complete, and Verifiable example? Perhaps something like that contrib.scikit-learn.org/py-earth/auto_examples/… ?

– Maximilian Peters
Jan 19 at 9:49





Can you add your dataset or modify the code to have a Minimal, Complete, and Verifiable example? Perhaps something like that contrib.scikit-learn.org/py-earth/auto_examples/… ?

– Maximilian Peters
Jan 19 at 9:49













@MaximilianPeters, done.

– pceccon
Jan 20 at 13:26





@MaximilianPeters, done.

– pceccon
Jan 20 at 13:26












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54257689%2fgenerating-multiple-plots-with-dash%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54257689%2fgenerating-multiple-plots-with-dash%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Homophylophilia

Updating UILabel text programmatically using a function

Cloud Functions - OpenCV Videocapture Read method fails for larger files from cloud storage