Find Most Important Input from a Neural Network












0















I trained a neural network with 37 Inputs. It has around 85% accuracy. Is it possible for me to find out which Input has the most effect. I tried this code but I cannot figure out how to find most important Input



weights = model.layers[0].get_weights()[0]
biases = model.layers[0].get_weights()[1]









share|improve this question



























    0















    I trained a neural network with 37 Inputs. It has around 85% accuracy. Is it possible for me to find out which Input has the most effect. I tried this code but I cannot figure out how to find most important Input



    weights = model.layers[0].get_weights()[0]
    biases = model.layers[0].get_weights()[1]









    share|improve this question

























      0












      0








      0


      1






      I trained a neural network with 37 Inputs. It has around 85% accuracy. Is it possible for me to find out which Input has the most effect. I tried this code but I cannot figure out how to find most important Input



      weights = model.layers[0].get_weights()[0]
      biases = model.layers[0].get_weights()[1]









      share|improve this question














      I trained a neural network with 37 Inputs. It has around 85% accuracy. Is it possible for me to find out which Input has the most effect. I tried this code but I cannot figure out how to find most important Input



      weights = model.layers[0].get_weights()[0]
      biases = model.layers[0].get_weights()[1]






      python-3.x tensorflow keras






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Jan 20 at 3:25









      APP BirdAPP Bird

      6861025




      6861025
























          1 Answer
          1






          active

          oldest

          votes


















          1














          One possible solution is to wrap your model with keras.wrappers.scikit_learn and then use Recursive Feature elimination in scikit-learn:



          def create_model():
          # create model
          model = Sequential()
          model.add(Dense(512, activation='relu'))
          model.add(Dense(512, activation='relu'))
          model.add(Dense(10, activation='softmax'))
          # Compile model
          model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
          return model

          model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=128, verbose=0)
          rfe = RFE(estimator=model, n_features_to_select=1, step=1)
          rfe.fit(X, y)
          ranking = rfe.ranking_.reshape(digits.images[0].shape)

          # Plot pixel ranking
          plt.matshow(ranking, cmap=plt.cm.Blues)
          plt.colorbar()
          plt.title("Ranking of pixels with RFE")
          plt.show()


          ranking pixel with rfe



          If you need to visualize weights see here.






          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54273338%2ffind-most-important-input-from-a-neural-network%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            One possible solution is to wrap your model with keras.wrappers.scikit_learn and then use Recursive Feature elimination in scikit-learn:



            def create_model():
            # create model
            model = Sequential()
            model.add(Dense(512, activation='relu'))
            model.add(Dense(512, activation='relu'))
            model.add(Dense(10, activation='softmax'))
            # Compile model
            model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
            return model

            model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=128, verbose=0)
            rfe = RFE(estimator=model, n_features_to_select=1, step=1)
            rfe.fit(X, y)
            ranking = rfe.ranking_.reshape(digits.images[0].shape)

            # Plot pixel ranking
            plt.matshow(ranking, cmap=plt.cm.Blues)
            plt.colorbar()
            plt.title("Ranking of pixels with RFE")
            plt.show()


            ranking pixel with rfe



            If you need to visualize weights see here.






            share|improve this answer




























              1














              One possible solution is to wrap your model with keras.wrappers.scikit_learn and then use Recursive Feature elimination in scikit-learn:



              def create_model():
              # create model
              model = Sequential()
              model.add(Dense(512, activation='relu'))
              model.add(Dense(512, activation='relu'))
              model.add(Dense(10, activation='softmax'))
              # Compile model
              model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
              return model

              model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=128, verbose=0)
              rfe = RFE(estimator=model, n_features_to_select=1, step=1)
              rfe.fit(X, y)
              ranking = rfe.ranking_.reshape(digits.images[0].shape)

              # Plot pixel ranking
              plt.matshow(ranking, cmap=plt.cm.Blues)
              plt.colorbar()
              plt.title("Ranking of pixels with RFE")
              plt.show()


              ranking pixel with rfe



              If you need to visualize weights see here.






              share|improve this answer


























                1












                1








                1







                One possible solution is to wrap your model with keras.wrappers.scikit_learn and then use Recursive Feature elimination in scikit-learn:



                def create_model():
                # create model
                model = Sequential()
                model.add(Dense(512, activation='relu'))
                model.add(Dense(512, activation='relu'))
                model.add(Dense(10, activation='softmax'))
                # Compile model
                model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
                return model

                model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=128, verbose=0)
                rfe = RFE(estimator=model, n_features_to_select=1, step=1)
                rfe.fit(X, y)
                ranking = rfe.ranking_.reshape(digits.images[0].shape)

                # Plot pixel ranking
                plt.matshow(ranking, cmap=plt.cm.Blues)
                plt.colorbar()
                plt.title("Ranking of pixels with RFE")
                plt.show()


                ranking pixel with rfe



                If you need to visualize weights see here.






                share|improve this answer













                One possible solution is to wrap your model with keras.wrappers.scikit_learn and then use Recursive Feature elimination in scikit-learn:



                def create_model():
                # create model
                model = Sequential()
                model.add(Dense(512, activation='relu'))
                model.add(Dense(512, activation='relu'))
                model.add(Dense(10, activation='softmax'))
                # Compile model
                model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
                return model

                model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=128, verbose=0)
                rfe = RFE(estimator=model, n_features_to_select=1, step=1)
                rfe.fit(X, y)
                ranking = rfe.ranking_.reshape(digits.images[0].shape)

                # Plot pixel ranking
                plt.matshow(ranking, cmap=plt.cm.Blues)
                plt.colorbar()
                plt.title("Ranking of pixels with RFE")
                plt.show()


                ranking pixel with rfe



                If you need to visualize weights see here.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Jan 20 at 8:00









                AmirAmir

                7,71264173




                7,71264173






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54273338%2ffind-most-important-input-from-a-neural-network%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Homophylophilia

                    Updating UILabel text programmatically using a function

                    Cloud Functions - OpenCV Videocapture Read method fails for larger files from cloud storage