Spark Scala: How to convert Dataframe[vector] to DataFrame[f1:Double, …, fn: Double)]
I just used Standard Scaler to normalize my features for a ML application. After selecting the scaled features, I want to convert this back to a dataframe of Doubles, though the length of my vectors are arbitrary. I know how to do it for a specific 3 features by using
myDF.map{case Row(v: Vector) => (v(0), v(1), v(2))}.toDF("f1", "f2", "f3")
but not for an arbitrary amount of features. Is there an easy way to do this?
Example:
val testDF = sc.parallelize(List(Vectors.dense(5D, 6D, 7D), Vectors.dense(8D, 9D, 10D), Vectors.dense(11D, 12D, 13D))).map(Tuple1(_)).toDF("scaledFeatures")
val myColumnNames = List("f1", "f2", "f3")
// val finalDF = DataFrame[f1: Double, f2: Double, f3: Double]
EDIT
I found out how to unpack to column names when creating the dataframe, but still am having trouble converting a vector to a sequence needed to create the dataframe:
finalDF = testDF.map{case Row(v: Vector) => v.toArray.toSeq /* <= this errors */}.toDF(List("f1", "f2", "f3"): _*)
scala apache-spark apache-spark-sql apache-spark-ml
add a comment |
I just used Standard Scaler to normalize my features for a ML application. After selecting the scaled features, I want to convert this back to a dataframe of Doubles, though the length of my vectors are arbitrary. I know how to do it for a specific 3 features by using
myDF.map{case Row(v: Vector) => (v(0), v(1), v(2))}.toDF("f1", "f2", "f3")
but not for an arbitrary amount of features. Is there an easy way to do this?
Example:
val testDF = sc.parallelize(List(Vectors.dense(5D, 6D, 7D), Vectors.dense(8D, 9D, 10D), Vectors.dense(11D, 12D, 13D))).map(Tuple1(_)).toDF("scaledFeatures")
val myColumnNames = List("f1", "f2", "f3")
// val finalDF = DataFrame[f1: Double, f2: Double, f3: Double]
EDIT
I found out how to unpack to column names when creating the dataframe, but still am having trouble converting a vector to a sequence needed to create the dataframe:
finalDF = testDF.map{case Row(v: Vector) => v.toArray.toSeq /* <= this errors */}.toDF(List("f1", "f2", "f3"): _*)
scala apache-spark apache-spark-sql apache-spark-ml
add a comment |
I just used Standard Scaler to normalize my features for a ML application. After selecting the scaled features, I want to convert this back to a dataframe of Doubles, though the length of my vectors are arbitrary. I know how to do it for a specific 3 features by using
myDF.map{case Row(v: Vector) => (v(0), v(1), v(2))}.toDF("f1", "f2", "f3")
but not for an arbitrary amount of features. Is there an easy way to do this?
Example:
val testDF = sc.parallelize(List(Vectors.dense(5D, 6D, 7D), Vectors.dense(8D, 9D, 10D), Vectors.dense(11D, 12D, 13D))).map(Tuple1(_)).toDF("scaledFeatures")
val myColumnNames = List("f1", "f2", "f3")
// val finalDF = DataFrame[f1: Double, f2: Double, f3: Double]
EDIT
I found out how to unpack to column names when creating the dataframe, but still am having trouble converting a vector to a sequence needed to create the dataframe:
finalDF = testDF.map{case Row(v: Vector) => v.toArray.toSeq /* <= this errors */}.toDF(List("f1", "f2", "f3"): _*)
scala apache-spark apache-spark-sql apache-spark-ml
I just used Standard Scaler to normalize my features for a ML application. After selecting the scaled features, I want to convert this back to a dataframe of Doubles, though the length of my vectors are arbitrary. I know how to do it for a specific 3 features by using
myDF.map{case Row(v: Vector) => (v(0), v(1), v(2))}.toDF("f1", "f2", "f3")
but not for an arbitrary amount of features. Is there an easy way to do this?
Example:
val testDF = sc.parallelize(List(Vectors.dense(5D, 6D, 7D), Vectors.dense(8D, 9D, 10D), Vectors.dense(11D, 12D, 13D))).map(Tuple1(_)).toDF("scaledFeatures")
val myColumnNames = List("f1", "f2", "f3")
// val finalDF = DataFrame[f1: Double, f2: Double, f3: Double]
EDIT
I found out how to unpack to column names when creating the dataframe, but still am having trouble converting a vector to a sequence needed to create the dataframe:
finalDF = testDF.map{case Row(v: Vector) => v.toArray.toSeq /* <= this errors */}.toDF(List("f1", "f2", "f3"): _*)
scala apache-spark apache-spark-sql apache-spark-ml
scala apache-spark apache-spark-sql apache-spark-ml
edited Jan 20 at 22:47
user10465355
1,9012416
1,9012416
asked Jun 29 '16 at 21:06
mt88mt88
71541331
71541331
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
One possible approach is something similar to this
import org.apache.spark.sql.functions.udf
import org.apache.spark.mllib.linalg.Vector
// Get size of the vector
val n = testDF.first.getAs[org.apache.spark.mllib.linalg.Vector](0).size
// Simple helper to convert vector to array<double>
val vecToSeq = udf((v: Vector) => v.toArray)
// Prepare a list of columns to create
val exprs = (0 until n).map(i => $"_tmp".getItem(i).alias(s"f$i"))
testDF.select(vecToSeq($"scaledFeatures").alias("_tmp")).select(exprs:_*)
If you know a list of columns upfront you can simplify this a little:
val cols: Seq[String] = ???
val exprs = cols.zipWithIndex.map{ case (c, i) => $"_tmp".getItem(i).alias(c) }
For Python equivalent see How to split Vector into columns - using PySpark.
add a comment |
Alternate solution that evovled couple of days ago: Import the VectorDisassembler
into your project (as long as it's not merged into Spark), now:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((0, 1.2, 1.3), (1, 2.2, 2.3), (2, 3.2, 3.3))
).toDF("id", "val1", "val2")
val assembler = new VectorAssembler()
.setInputCols(Array("val1", "val2"))
.setOutputCol("vectorCol")
val output = assembler.transform(dataset)
output.show()
/*
+---+----+----+---------+
| id|val1|val2|vectorCol|
+---+----+----+---------+
| 0| 1.2| 1.3|[1.2,1.3]|
| 1| 2.2| 2.3|[2.2,2.3]|
| 2| 3.2| 3.3|[3.2,3.3]|
+---+----+----+---------+*/
val disassembler = new org.apache.spark.ml.feature.VectorDisassembler()
.setInputCol("vectorCol")
disassembler.transform(output).show()
/*
+---+----+----+---------+----+----+
| id|val1|val2|vectorCol|val1|val2|
+---+----+----+---------+----+----+
| 0| 1.2| 1.3|[1.2,1.3]| 1.2| 1.3|
| 1| 2.2| 2.3|[2.2,2.3]| 2.2| 2.3|
| 2| 3.2| 3.3|[3.2,3.3]| 3.2| 3.3|
+---+----+----+---------+----+----+*/
1
VectorDisassembler
never got into Spark (SPARK-13610).
– hi-zir
May 9 '18 at 18:41
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f38110038%2fspark-scala-how-to-convert-dataframevector-to-dataframef1double-fn-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
One possible approach is something similar to this
import org.apache.spark.sql.functions.udf
import org.apache.spark.mllib.linalg.Vector
// Get size of the vector
val n = testDF.first.getAs[org.apache.spark.mllib.linalg.Vector](0).size
// Simple helper to convert vector to array<double>
val vecToSeq = udf((v: Vector) => v.toArray)
// Prepare a list of columns to create
val exprs = (0 until n).map(i => $"_tmp".getItem(i).alias(s"f$i"))
testDF.select(vecToSeq($"scaledFeatures").alias("_tmp")).select(exprs:_*)
If you know a list of columns upfront you can simplify this a little:
val cols: Seq[String] = ???
val exprs = cols.zipWithIndex.map{ case (c, i) => $"_tmp".getItem(i).alias(c) }
For Python equivalent see How to split Vector into columns - using PySpark.
add a comment |
One possible approach is something similar to this
import org.apache.spark.sql.functions.udf
import org.apache.spark.mllib.linalg.Vector
// Get size of the vector
val n = testDF.first.getAs[org.apache.spark.mllib.linalg.Vector](0).size
// Simple helper to convert vector to array<double>
val vecToSeq = udf((v: Vector) => v.toArray)
// Prepare a list of columns to create
val exprs = (0 until n).map(i => $"_tmp".getItem(i).alias(s"f$i"))
testDF.select(vecToSeq($"scaledFeatures").alias("_tmp")).select(exprs:_*)
If you know a list of columns upfront you can simplify this a little:
val cols: Seq[String] = ???
val exprs = cols.zipWithIndex.map{ case (c, i) => $"_tmp".getItem(i).alias(c) }
For Python equivalent see How to split Vector into columns - using PySpark.
add a comment |
One possible approach is something similar to this
import org.apache.spark.sql.functions.udf
import org.apache.spark.mllib.linalg.Vector
// Get size of the vector
val n = testDF.first.getAs[org.apache.spark.mllib.linalg.Vector](0).size
// Simple helper to convert vector to array<double>
val vecToSeq = udf((v: Vector) => v.toArray)
// Prepare a list of columns to create
val exprs = (0 until n).map(i => $"_tmp".getItem(i).alias(s"f$i"))
testDF.select(vecToSeq($"scaledFeatures").alias("_tmp")).select(exprs:_*)
If you know a list of columns upfront you can simplify this a little:
val cols: Seq[String] = ???
val exprs = cols.zipWithIndex.map{ case (c, i) => $"_tmp".getItem(i).alias(c) }
For Python equivalent see How to split Vector into columns - using PySpark.
One possible approach is something similar to this
import org.apache.spark.sql.functions.udf
import org.apache.spark.mllib.linalg.Vector
// Get size of the vector
val n = testDF.first.getAs[org.apache.spark.mllib.linalg.Vector](0).size
// Simple helper to convert vector to array<double>
val vecToSeq = udf((v: Vector) => v.toArray)
// Prepare a list of columns to create
val exprs = (0 until n).map(i => $"_tmp".getItem(i).alias(s"f$i"))
testDF.select(vecToSeq($"scaledFeatures").alias("_tmp")).select(exprs:_*)
If you know a list of columns upfront you can simplify this a little:
val cols: Seq[String] = ???
val exprs = cols.zipWithIndex.map{ case (c, i) => $"_tmp".getItem(i).alias(c) }
For Python equivalent see How to split Vector into columns - using PySpark.
edited May 24 '18 at 23:47
Community♦
11
11
answered Jun 29 '16 at 21:41
zero323zero323
167k41488578
167k41488578
add a comment |
add a comment |
Alternate solution that evovled couple of days ago: Import the VectorDisassembler
into your project (as long as it's not merged into Spark), now:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((0, 1.2, 1.3), (1, 2.2, 2.3), (2, 3.2, 3.3))
).toDF("id", "val1", "val2")
val assembler = new VectorAssembler()
.setInputCols(Array("val1", "val2"))
.setOutputCol("vectorCol")
val output = assembler.transform(dataset)
output.show()
/*
+---+----+----+---------+
| id|val1|val2|vectorCol|
+---+----+----+---------+
| 0| 1.2| 1.3|[1.2,1.3]|
| 1| 2.2| 2.3|[2.2,2.3]|
| 2| 3.2| 3.3|[3.2,3.3]|
+---+----+----+---------+*/
val disassembler = new org.apache.spark.ml.feature.VectorDisassembler()
.setInputCol("vectorCol")
disassembler.transform(output).show()
/*
+---+----+----+---------+----+----+
| id|val1|val2|vectorCol|val1|val2|
+---+----+----+---------+----+----+
| 0| 1.2| 1.3|[1.2,1.3]| 1.2| 1.3|
| 1| 2.2| 2.3|[2.2,2.3]| 2.2| 2.3|
| 2| 3.2| 3.3|[3.2,3.3]| 3.2| 3.3|
+---+----+----+---------+----+----+*/
1
VectorDisassembler
never got into Spark (SPARK-13610).
– hi-zir
May 9 '18 at 18:41
add a comment |
Alternate solution that evovled couple of days ago: Import the VectorDisassembler
into your project (as long as it's not merged into Spark), now:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((0, 1.2, 1.3), (1, 2.2, 2.3), (2, 3.2, 3.3))
).toDF("id", "val1", "val2")
val assembler = new VectorAssembler()
.setInputCols(Array("val1", "val2"))
.setOutputCol("vectorCol")
val output = assembler.transform(dataset)
output.show()
/*
+---+----+----+---------+
| id|val1|val2|vectorCol|
+---+----+----+---------+
| 0| 1.2| 1.3|[1.2,1.3]|
| 1| 2.2| 2.3|[2.2,2.3]|
| 2| 3.2| 3.3|[3.2,3.3]|
+---+----+----+---------+*/
val disassembler = new org.apache.spark.ml.feature.VectorDisassembler()
.setInputCol("vectorCol")
disassembler.transform(output).show()
/*
+---+----+----+---------+----+----+
| id|val1|val2|vectorCol|val1|val2|
+---+----+----+---------+----+----+
| 0| 1.2| 1.3|[1.2,1.3]| 1.2| 1.3|
| 1| 2.2| 2.3|[2.2,2.3]| 2.2| 2.3|
| 2| 3.2| 3.3|[3.2,3.3]| 3.2| 3.3|
+---+----+----+---------+----+----+*/
1
VectorDisassembler
never got into Spark (SPARK-13610).
– hi-zir
May 9 '18 at 18:41
add a comment |
Alternate solution that evovled couple of days ago: Import the VectorDisassembler
into your project (as long as it's not merged into Spark), now:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((0, 1.2, 1.3), (1, 2.2, 2.3), (2, 3.2, 3.3))
).toDF("id", "val1", "val2")
val assembler = new VectorAssembler()
.setInputCols(Array("val1", "val2"))
.setOutputCol("vectorCol")
val output = assembler.transform(dataset)
output.show()
/*
+---+----+----+---------+
| id|val1|val2|vectorCol|
+---+----+----+---------+
| 0| 1.2| 1.3|[1.2,1.3]|
| 1| 2.2| 2.3|[2.2,2.3]|
| 2| 3.2| 3.3|[3.2,3.3]|
+---+----+----+---------+*/
val disassembler = new org.apache.spark.ml.feature.VectorDisassembler()
.setInputCol("vectorCol")
disassembler.transform(output).show()
/*
+---+----+----+---------+----+----+
| id|val1|val2|vectorCol|val1|val2|
+---+----+----+---------+----+----+
| 0| 1.2| 1.3|[1.2,1.3]| 1.2| 1.3|
| 1| 2.2| 2.3|[2.2,2.3]| 2.2| 2.3|
| 2| 3.2| 3.3|[3.2,3.3]| 3.2| 3.3|
+---+----+----+---------+----+----+*/
Alternate solution that evovled couple of days ago: Import the VectorDisassembler
into your project (as long as it's not merged into Spark), now:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((0, 1.2, 1.3), (1, 2.2, 2.3), (2, 3.2, 3.3))
).toDF("id", "val1", "val2")
val assembler = new VectorAssembler()
.setInputCols(Array("val1", "val2"))
.setOutputCol("vectorCol")
val output = assembler.transform(dataset)
output.show()
/*
+---+----+----+---------+
| id|val1|val2|vectorCol|
+---+----+----+---------+
| 0| 1.2| 1.3|[1.2,1.3]|
| 1| 2.2| 2.3|[2.2,2.3]|
| 2| 3.2| 3.3|[3.2,3.3]|
+---+----+----+---------+*/
val disassembler = new org.apache.spark.ml.feature.VectorDisassembler()
.setInputCol("vectorCol")
disassembler.transform(output).show()
/*
+---+----+----+---------+----+----+
| id|val1|val2|vectorCol|val1|val2|
+---+----+----+---------+----+----+
| 0| 1.2| 1.3|[1.2,1.3]| 1.2| 1.3|
| 1| 2.2| 2.3|[2.2,2.3]| 2.2| 2.3|
| 2| 3.2| 3.3|[3.2,3.3]| 3.2| 3.3|
+---+----+----+---------+----+----+*/
answered Jan 13 '17 at 16:29
BoernBoern
2,91433050
2,91433050
1
VectorDisassembler
never got into Spark (SPARK-13610).
– hi-zir
May 9 '18 at 18:41
add a comment |
1
VectorDisassembler
never got into Spark (SPARK-13610).
– hi-zir
May 9 '18 at 18:41
1
1
VectorDisassembler
never got into Spark (SPARK-13610).– hi-zir
May 9 '18 at 18:41
VectorDisassembler
never got into Spark (SPARK-13610).– hi-zir
May 9 '18 at 18:41
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f38110038%2fspark-scala-how-to-convert-dataframevector-to-dataframef1double-fn-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown