How to save a modal and load again to use?
I have no more knowledge of python. This is my ANN modal code in python. This code contains to predict customers situation in binary output. Which is customers leave or not.
Code:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Now let's make the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
# Part 3 - Making predictions and evaluating the model
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
I want to know how to save this modal as h5 using keras. After I saved it how to load again in another project to predict the data.
python keras
add a comment |
I have no more knowledge of python. This is my ANN modal code in python. This code contains to predict customers situation in binary output. Which is customers leave or not.
Code:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Now let's make the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
# Part 3 - Making predictions and evaluating the model
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
I want to know how to save this modal as h5 using keras. After I saved it how to load again in another project to predict the data.
python keras
"m5" or ".h5"? if it's the latter, these links may help - machinelearningmastery.com/save-load-keras-deep-learning-models and jovianlin.io/saving-loading-keras-models
– gireesh4manu
Jan 19 at 6:25
This link on SO gives a more detailed explanation for the question in picture - stackoverflow.com/questions/47266383/…
– gireesh4manu
Jan 19 at 6:26
try pickle module in python..
– Ashu Grover
Jan 19 at 6:31
why pickle is good?
– Ind
Jan 19 at 6:36
Possible duplicate of How to save final model using keras?
– sdcbr
Jan 19 at 10:33
add a comment |
I have no more knowledge of python. This is my ANN modal code in python. This code contains to predict customers situation in binary output. Which is customers leave or not.
Code:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Now let's make the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
# Part 3 - Making predictions and evaluating the model
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
I want to know how to save this modal as h5 using keras. After I saved it how to load again in another project to predict the data.
python keras
I have no more knowledge of python. This is my ANN modal code in python. This code contains to predict customers situation in binary output. Which is customers leave or not.
Code:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Now let's make the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
# Part 3 - Making predictions and evaluating the model
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
I want to know how to save this modal as h5 using keras. After I saved it how to load again in another project to predict the data.
python keras
python keras
edited Jan 19 at 6:27
Ind
asked Jan 19 at 6:22
IndInd
306
306
"m5" or ".h5"? if it's the latter, these links may help - machinelearningmastery.com/save-load-keras-deep-learning-models and jovianlin.io/saving-loading-keras-models
– gireesh4manu
Jan 19 at 6:25
This link on SO gives a more detailed explanation for the question in picture - stackoverflow.com/questions/47266383/…
– gireesh4manu
Jan 19 at 6:26
try pickle module in python..
– Ashu Grover
Jan 19 at 6:31
why pickle is good?
– Ind
Jan 19 at 6:36
Possible duplicate of How to save final model using keras?
– sdcbr
Jan 19 at 10:33
add a comment |
"m5" or ".h5"? if it's the latter, these links may help - machinelearningmastery.com/save-load-keras-deep-learning-models and jovianlin.io/saving-loading-keras-models
– gireesh4manu
Jan 19 at 6:25
This link on SO gives a more detailed explanation for the question in picture - stackoverflow.com/questions/47266383/…
– gireesh4manu
Jan 19 at 6:26
try pickle module in python..
– Ashu Grover
Jan 19 at 6:31
why pickle is good?
– Ind
Jan 19 at 6:36
Possible duplicate of How to save final model using keras?
– sdcbr
Jan 19 at 10:33
"m5" or ".h5"? if it's the latter, these links may help - machinelearningmastery.com/save-load-keras-deep-learning-models and jovianlin.io/saving-loading-keras-models
– gireesh4manu
Jan 19 at 6:25
"m5" or ".h5"? if it's the latter, these links may help - machinelearningmastery.com/save-load-keras-deep-learning-models and jovianlin.io/saving-loading-keras-models
– gireesh4manu
Jan 19 at 6:25
This link on SO gives a more detailed explanation for the question in picture - stackoverflow.com/questions/47266383/…
– gireesh4manu
Jan 19 at 6:26
This link on SO gives a more detailed explanation for the question in picture - stackoverflow.com/questions/47266383/…
– gireesh4manu
Jan 19 at 6:26
try pickle module in python..
– Ashu Grover
Jan 19 at 6:31
try pickle module in python..
– Ashu Grover
Jan 19 at 6:31
why pickle is good?
– Ind
Jan 19 at 6:36
why pickle is good?
– Ind
Jan 19 at 6:36
Possible duplicate of How to save final model using keras?
– sdcbr
Jan 19 at 10:33
Possible duplicate of How to save final model using keras?
– sdcbr
Jan 19 at 10:33
add a comment |
1 Answer
1
active
oldest
votes
Inorder to save the model, You can do the one below:
from keras.models import load_model
model.save('model_file.h5')
And to load the model back use:
my_model = load_model('model_file.h5')
Where the model word come from?
– Ind
Jan 19 at 10:35
The model is the one you created.For example model = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=50, verbose=0)
– RAM SHANKER G
Jan 19 at 10:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54264617%2fhow-to-save-a-modal-and-load-again-to-use%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Inorder to save the model, You can do the one below:
from keras.models import load_model
model.save('model_file.h5')
And to load the model back use:
my_model = load_model('model_file.h5')
Where the model word come from?
– Ind
Jan 19 at 10:35
The model is the one you created.For example model = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=50, verbose=0)
– RAM SHANKER G
Jan 19 at 10:49
add a comment |
Inorder to save the model, You can do the one below:
from keras.models import load_model
model.save('model_file.h5')
And to load the model back use:
my_model = load_model('model_file.h5')
Where the model word come from?
– Ind
Jan 19 at 10:35
The model is the one you created.For example model = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=50, verbose=0)
– RAM SHANKER G
Jan 19 at 10:49
add a comment |
Inorder to save the model, You can do the one below:
from keras.models import load_model
model.save('model_file.h5')
And to load the model back use:
my_model = load_model('model_file.h5')
Inorder to save the model, You can do the one below:
from keras.models import load_model
model.save('model_file.h5')
And to load the model back use:
my_model = load_model('model_file.h5')
answered Jan 19 at 6:46
RAM SHANKER GRAM SHANKER G
77110
77110
Where the model word come from?
– Ind
Jan 19 at 10:35
The model is the one you created.For example model = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=50, verbose=0)
– RAM SHANKER G
Jan 19 at 10:49
add a comment |
Where the model word come from?
– Ind
Jan 19 at 10:35
The model is the one you created.For example model = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=50, verbose=0)
– RAM SHANKER G
Jan 19 at 10:49
Where the model word come from?
– Ind
Jan 19 at 10:35
Where the model word come from?
– Ind
Jan 19 at 10:35
The model is the one you created.For example model = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=50, verbose=0)
– RAM SHANKER G
Jan 19 at 10:49
The model is the one you created.For example model = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=50, verbose=0)
– RAM SHANKER G
Jan 19 at 10:49
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54264617%2fhow-to-save-a-modal-and-load-again-to-use%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
"m5" or ".h5"? if it's the latter, these links may help - machinelearningmastery.com/save-load-keras-deep-learning-models and jovianlin.io/saving-loading-keras-models
– gireesh4manu
Jan 19 at 6:25
This link on SO gives a more detailed explanation for the question in picture - stackoverflow.com/questions/47266383/…
– gireesh4manu
Jan 19 at 6:26
try pickle module in python..
– Ashu Grover
Jan 19 at 6:31
why pickle is good?
– Ind
Jan 19 at 6:36
Possible duplicate of How to save final model using keras?
– sdcbr
Jan 19 at 10:33