Data type error for tf.data.Dataset.from_tensor_slices… Cannot convert a TensorShape to dtype:












3















I'm trying to take data from a csv with a list of files and a list of labels, and convert it to being one-hot labeled for a categorical classification using tf.keras. I am using eager mode for the code.



I'm trying to follow the tf.data example from CS230 building a data pipeline.



https://cs230-stanford.github.io/tensorflow-input-data.html



my code is below under the code section.



the csv file that lists the location of all the pictures is located on dropbox here:
https://www.dropbox.com/s/5uo8o1p30g2aeta/Clock.csv?dl=0



When I run the code as shown below I get a



TypeError: Cannot convert a TensorShape to dtype: <dtype: 'float32'>
error.


When I add to line 55 and make line 56 :



one_hot_Hr = tf.one_hot(file.Hr,classes)
one_hot_Hr = tf.to_int32(one_hot_Hr)


I get this error:



InvalidArgumentError: cannot compute Mul as input #0 was expected to be 
a float tensor but is a int32 tensor [Op:Mul]
name: loss/activation_2_loss/mul/


when I run



iterator.get_next()


the pictures are formated as



<tf.Tensor: id=12462, shape=(32, 300, 300, 3), dtype=float32, numpy=


the labels are formated as:



 <tf.Tensor: id=12463, shape=(32, 13), dtype=float32, numpy=


based on the errors, it seems like it should be a simple formatting issue with the labels, but I'm stumped and neither error brings up much useful information on stack overflow.



Code:



import pandas as pd
import tensorflow as tf
import tensorflow.keras as k
#import cv2
#tf.enable_eager_execution()
#import argparse
#from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense



def parse_function(filename, label):
image_string = tf.read_file(filename)

# Don't use tf.image.decode_image, or the output shape will be undefined
image = tf.image.decode_jpeg(image_string, channels=3)

# This will convert to float values in [0, 1]
image = tf.image.convert_image_dtype(image, tf.float32)


image = tf.image.resize_images(image, [300, 300])
return image, label



def train_preprocess(image, label):
image = tf.image.random_flip_left_right(image)

image = tf.image.random_brightness(image, max_delta=32.0 / 255.0)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)

# Make sure the image is still in [0, 1]
image = tf.clip_by_value(image, 0.0, 1.0)

return image, label

batch_size = 32
classes = 13

fileLoc = "C:/Users/USAgData/TF/Clock.csv"
file = pd.read_csv(fileLoc)
file['Loc']=''
file.Loc = str(str(file.Location)[9:23] + str(file.Location)[28:46])


one_hot_Hr = tf.one_hot(file.Hr,classes)
#one_hot_Hr = tf.to_int32(one_hot_Hr)



dataset = tf.data.Dataset.from_tensor_slices((file.Loc, one_hot_Hr))
dataset = dataset.shuffle(len(file.Location))
dataset = dataset.map(parse_function, num_parallel_calls=4)
dataset = dataset.map(train_preprocess, num_parallel_calls=4)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(1)

#print(dataset.shape) # ==> "(tf.float32, tf.float32)"

iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()

#print(next_element)

tf.keras.backend.clear_session()

model_name="Documentation"
model = k.Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(300,300,3))) #Changed shape to include batch
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

#model.add(Conv2D(32, (3, 3)))
#model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(2, 2)))

#model.add(Conv2D(64, (3, 3)))
#model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(32))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(classes))
model.add(Activation('softmax')) #Changed from sigmoid




#changed from categorical cross entropy
model.compile(loss='categorical_crossentropy',
optimizer=tf.train.RMSPropOptimizer(.0001),
metrics=['accuracy'])

model.summary()



fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


#model.evaluate(dataset,steps=30)


import sys
print(sys.version)
tf.__version__


I'm running:
tf: 1.10.0
Python: 3.6.7 |Anaconda custom (64-bit)| (default, Dec 10 2018, 20:35:02) [MSC v.1915 64 bit (AMD64)]



I don't know if this should truly be the solution, but when I switch:



fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


to



fitting = model.fit(iterator,epochs = 1 , shuffle = False, steps_per_epoch = 14400//batch_size)


The model does start to train. But, then them model runs out of data points because the iterator will not start over again.










share|improve this question





























    3















    I'm trying to take data from a csv with a list of files and a list of labels, and convert it to being one-hot labeled for a categorical classification using tf.keras. I am using eager mode for the code.



    I'm trying to follow the tf.data example from CS230 building a data pipeline.



    https://cs230-stanford.github.io/tensorflow-input-data.html



    my code is below under the code section.



    the csv file that lists the location of all the pictures is located on dropbox here:
    https://www.dropbox.com/s/5uo8o1p30g2aeta/Clock.csv?dl=0



    When I run the code as shown below I get a



    TypeError: Cannot convert a TensorShape to dtype: <dtype: 'float32'>
    error.


    When I add to line 55 and make line 56 :



    one_hot_Hr = tf.one_hot(file.Hr,classes)
    one_hot_Hr = tf.to_int32(one_hot_Hr)


    I get this error:



    InvalidArgumentError: cannot compute Mul as input #0 was expected to be 
    a float tensor but is a int32 tensor [Op:Mul]
    name: loss/activation_2_loss/mul/


    when I run



    iterator.get_next()


    the pictures are formated as



    <tf.Tensor: id=12462, shape=(32, 300, 300, 3), dtype=float32, numpy=


    the labels are formated as:



     <tf.Tensor: id=12463, shape=(32, 13), dtype=float32, numpy=


    based on the errors, it seems like it should be a simple formatting issue with the labels, but I'm stumped and neither error brings up much useful information on stack overflow.



    Code:



    import pandas as pd
    import tensorflow as tf
    import tensorflow.keras as k
    #import cv2
    #tf.enable_eager_execution()
    #import argparse
    #from tensorflow.keras.preprocessing.image import ImageDataGenerator
    from tensorflow.keras.layers import Conv2D, MaxPooling2D
    from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense



    def parse_function(filename, label):
    image_string = tf.read_file(filename)

    # Don't use tf.image.decode_image, or the output shape will be undefined
    image = tf.image.decode_jpeg(image_string, channels=3)

    # This will convert to float values in [0, 1]
    image = tf.image.convert_image_dtype(image, tf.float32)


    image = tf.image.resize_images(image, [300, 300])
    return image, label



    def train_preprocess(image, label):
    image = tf.image.random_flip_left_right(image)

    image = tf.image.random_brightness(image, max_delta=32.0 / 255.0)
    image = tf.image.random_saturation(image, lower=0.5, upper=1.5)

    # Make sure the image is still in [0, 1]
    image = tf.clip_by_value(image, 0.0, 1.0)

    return image, label

    batch_size = 32
    classes = 13

    fileLoc = "C:/Users/USAgData/TF/Clock.csv"
    file = pd.read_csv(fileLoc)
    file['Loc']=''
    file.Loc = str(str(file.Location)[9:23] + str(file.Location)[28:46])


    one_hot_Hr = tf.one_hot(file.Hr,classes)
    #one_hot_Hr = tf.to_int32(one_hot_Hr)



    dataset = tf.data.Dataset.from_tensor_slices((file.Loc, one_hot_Hr))
    dataset = dataset.shuffle(len(file.Location))
    dataset = dataset.map(parse_function, num_parallel_calls=4)
    dataset = dataset.map(train_preprocess, num_parallel_calls=4)
    dataset = dataset.batch(batch_size)
    dataset = dataset.prefetch(1)

    #print(dataset.shape) # ==> "(tf.float32, tf.float32)"

    iterator = dataset.make_one_shot_iterator()
    next_element = iterator.get_next()

    #print(next_element)

    tf.keras.backend.clear_session()

    model_name="Documentation"
    model = k.Sequential()
    model.add(Conv2D(64, (3, 3), input_shape=(300,300,3))) #Changed shape to include batch
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    #model.add(Conv2D(32, (3, 3)))
    #model.add(Activation('relu'))
    #model.add(MaxPooling2D(pool_size=(2, 2)))

    #model.add(Conv2D(64, (3, 3)))
    #model.add(Activation('relu'))
    #model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten())
    model.add(Dense(32))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(classes))
    model.add(Activation('softmax')) #Changed from sigmoid




    #changed from categorical cross entropy
    model.compile(loss='categorical_crossentropy',
    optimizer=tf.train.RMSPropOptimizer(.0001),
    metrics=['accuracy'])

    model.summary()



    fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


    #model.evaluate(dataset,steps=30)


    import sys
    print(sys.version)
    tf.__version__


    I'm running:
    tf: 1.10.0
    Python: 3.6.7 |Anaconda custom (64-bit)| (default, Dec 10 2018, 20:35:02) [MSC v.1915 64 bit (AMD64)]



    I don't know if this should truly be the solution, but when I switch:



    fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


    to



    fitting = model.fit(iterator,epochs = 1 , shuffle = False, steps_per_epoch = 14400//batch_size)


    The model does start to train. But, then them model runs out of data points because the iterator will not start over again.










    share|improve this question



























      3












      3








      3








      I'm trying to take data from a csv with a list of files and a list of labels, and convert it to being one-hot labeled for a categorical classification using tf.keras. I am using eager mode for the code.



      I'm trying to follow the tf.data example from CS230 building a data pipeline.



      https://cs230-stanford.github.io/tensorflow-input-data.html



      my code is below under the code section.



      the csv file that lists the location of all the pictures is located on dropbox here:
      https://www.dropbox.com/s/5uo8o1p30g2aeta/Clock.csv?dl=0



      When I run the code as shown below I get a



      TypeError: Cannot convert a TensorShape to dtype: <dtype: 'float32'>
      error.


      When I add to line 55 and make line 56 :



      one_hot_Hr = tf.one_hot(file.Hr,classes)
      one_hot_Hr = tf.to_int32(one_hot_Hr)


      I get this error:



      InvalidArgumentError: cannot compute Mul as input #0 was expected to be 
      a float tensor but is a int32 tensor [Op:Mul]
      name: loss/activation_2_loss/mul/


      when I run



      iterator.get_next()


      the pictures are formated as



      <tf.Tensor: id=12462, shape=(32, 300, 300, 3), dtype=float32, numpy=


      the labels are formated as:



       <tf.Tensor: id=12463, shape=(32, 13), dtype=float32, numpy=


      based on the errors, it seems like it should be a simple formatting issue with the labels, but I'm stumped and neither error brings up much useful information on stack overflow.



      Code:



      import pandas as pd
      import tensorflow as tf
      import tensorflow.keras as k
      #import cv2
      #tf.enable_eager_execution()
      #import argparse
      #from tensorflow.keras.preprocessing.image import ImageDataGenerator
      from tensorflow.keras.layers import Conv2D, MaxPooling2D
      from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense



      def parse_function(filename, label):
      image_string = tf.read_file(filename)

      # Don't use tf.image.decode_image, or the output shape will be undefined
      image = tf.image.decode_jpeg(image_string, channels=3)

      # This will convert to float values in [0, 1]
      image = tf.image.convert_image_dtype(image, tf.float32)


      image = tf.image.resize_images(image, [300, 300])
      return image, label



      def train_preprocess(image, label):
      image = tf.image.random_flip_left_right(image)

      image = tf.image.random_brightness(image, max_delta=32.0 / 255.0)
      image = tf.image.random_saturation(image, lower=0.5, upper=1.5)

      # Make sure the image is still in [0, 1]
      image = tf.clip_by_value(image, 0.0, 1.0)

      return image, label

      batch_size = 32
      classes = 13

      fileLoc = "C:/Users/USAgData/TF/Clock.csv"
      file = pd.read_csv(fileLoc)
      file['Loc']=''
      file.Loc = str(str(file.Location)[9:23] + str(file.Location)[28:46])


      one_hot_Hr = tf.one_hot(file.Hr,classes)
      #one_hot_Hr = tf.to_int32(one_hot_Hr)



      dataset = tf.data.Dataset.from_tensor_slices((file.Loc, one_hot_Hr))
      dataset = dataset.shuffle(len(file.Location))
      dataset = dataset.map(parse_function, num_parallel_calls=4)
      dataset = dataset.map(train_preprocess, num_parallel_calls=4)
      dataset = dataset.batch(batch_size)
      dataset = dataset.prefetch(1)

      #print(dataset.shape) # ==> "(tf.float32, tf.float32)"

      iterator = dataset.make_one_shot_iterator()
      next_element = iterator.get_next()

      #print(next_element)

      tf.keras.backend.clear_session()

      model_name="Documentation"
      model = k.Sequential()
      model.add(Conv2D(64, (3, 3), input_shape=(300,300,3))) #Changed shape to include batch
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      #model.add(Conv2D(32, (3, 3)))
      #model.add(Activation('relu'))
      #model.add(MaxPooling2D(pool_size=(2, 2)))

      #model.add(Conv2D(64, (3, 3)))
      #model.add(Activation('relu'))
      #model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Flatten())
      model.add(Dense(32))
      model.add(Activation('relu'))
      model.add(Dropout(0.5))
      model.add(Dense(classes))
      model.add(Activation('softmax')) #Changed from sigmoid




      #changed from categorical cross entropy
      model.compile(loss='categorical_crossentropy',
      optimizer=tf.train.RMSPropOptimizer(.0001),
      metrics=['accuracy'])

      model.summary()



      fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


      #model.evaluate(dataset,steps=30)


      import sys
      print(sys.version)
      tf.__version__


      I'm running:
      tf: 1.10.0
      Python: 3.6.7 |Anaconda custom (64-bit)| (default, Dec 10 2018, 20:35:02) [MSC v.1915 64 bit (AMD64)]



      I don't know if this should truly be the solution, but when I switch:



      fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


      to



      fitting = model.fit(iterator,epochs = 1 , shuffle = False, steps_per_epoch = 14400//batch_size)


      The model does start to train. But, then them model runs out of data points because the iterator will not start over again.










      share|improve this question
















      I'm trying to take data from a csv with a list of files and a list of labels, and convert it to being one-hot labeled for a categorical classification using tf.keras. I am using eager mode for the code.



      I'm trying to follow the tf.data example from CS230 building a data pipeline.



      https://cs230-stanford.github.io/tensorflow-input-data.html



      my code is below under the code section.



      the csv file that lists the location of all the pictures is located on dropbox here:
      https://www.dropbox.com/s/5uo8o1p30g2aeta/Clock.csv?dl=0



      When I run the code as shown below I get a



      TypeError: Cannot convert a TensorShape to dtype: <dtype: 'float32'>
      error.


      When I add to line 55 and make line 56 :



      one_hot_Hr = tf.one_hot(file.Hr,classes)
      one_hot_Hr = tf.to_int32(one_hot_Hr)


      I get this error:



      InvalidArgumentError: cannot compute Mul as input #0 was expected to be 
      a float tensor but is a int32 tensor [Op:Mul]
      name: loss/activation_2_loss/mul/


      when I run



      iterator.get_next()


      the pictures are formated as



      <tf.Tensor: id=12462, shape=(32, 300, 300, 3), dtype=float32, numpy=


      the labels are formated as:



       <tf.Tensor: id=12463, shape=(32, 13), dtype=float32, numpy=


      based on the errors, it seems like it should be a simple formatting issue with the labels, but I'm stumped and neither error brings up much useful information on stack overflow.



      Code:



      import pandas as pd
      import tensorflow as tf
      import tensorflow.keras as k
      #import cv2
      #tf.enable_eager_execution()
      #import argparse
      #from tensorflow.keras.preprocessing.image import ImageDataGenerator
      from tensorflow.keras.layers import Conv2D, MaxPooling2D
      from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense



      def parse_function(filename, label):
      image_string = tf.read_file(filename)

      # Don't use tf.image.decode_image, or the output shape will be undefined
      image = tf.image.decode_jpeg(image_string, channels=3)

      # This will convert to float values in [0, 1]
      image = tf.image.convert_image_dtype(image, tf.float32)


      image = tf.image.resize_images(image, [300, 300])
      return image, label



      def train_preprocess(image, label):
      image = tf.image.random_flip_left_right(image)

      image = tf.image.random_brightness(image, max_delta=32.0 / 255.0)
      image = tf.image.random_saturation(image, lower=0.5, upper=1.5)

      # Make sure the image is still in [0, 1]
      image = tf.clip_by_value(image, 0.0, 1.0)

      return image, label

      batch_size = 32
      classes = 13

      fileLoc = "C:/Users/USAgData/TF/Clock.csv"
      file = pd.read_csv(fileLoc)
      file['Loc']=''
      file.Loc = str(str(file.Location)[9:23] + str(file.Location)[28:46])


      one_hot_Hr = tf.one_hot(file.Hr,classes)
      #one_hot_Hr = tf.to_int32(one_hot_Hr)



      dataset = tf.data.Dataset.from_tensor_slices((file.Loc, one_hot_Hr))
      dataset = dataset.shuffle(len(file.Location))
      dataset = dataset.map(parse_function, num_parallel_calls=4)
      dataset = dataset.map(train_preprocess, num_parallel_calls=4)
      dataset = dataset.batch(batch_size)
      dataset = dataset.prefetch(1)

      #print(dataset.shape) # ==> "(tf.float32, tf.float32)"

      iterator = dataset.make_one_shot_iterator()
      next_element = iterator.get_next()

      #print(next_element)

      tf.keras.backend.clear_session()

      model_name="Documentation"
      model = k.Sequential()
      model.add(Conv2D(64, (3, 3), input_shape=(300,300,3))) #Changed shape to include batch
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      #model.add(Conv2D(32, (3, 3)))
      #model.add(Activation('relu'))
      #model.add(MaxPooling2D(pool_size=(2, 2)))

      #model.add(Conv2D(64, (3, 3)))
      #model.add(Activation('relu'))
      #model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Flatten())
      model.add(Dense(32))
      model.add(Activation('relu'))
      model.add(Dropout(0.5))
      model.add(Dense(classes))
      model.add(Activation('softmax')) #Changed from sigmoid




      #changed from categorical cross entropy
      model.compile(loss='categorical_crossentropy',
      optimizer=tf.train.RMSPropOptimizer(.0001),
      metrics=['accuracy'])

      model.summary()



      fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


      #model.evaluate(dataset,steps=30)


      import sys
      print(sys.version)
      tf.__version__


      I'm running:
      tf: 1.10.0
      Python: 3.6.7 |Anaconda custom (64-bit)| (default, Dec 10 2018, 20:35:02) [MSC v.1915 64 bit (AMD64)]



      I don't know if this should truly be the solution, but when I switch:



      fitting = model.fit_generator(iterator,epochs =1 ,shuffle=False, steps_per_epoch=14400//batch_size)


      to



      fitting = model.fit(iterator,epochs = 1 , shuffle = False, steps_per_epoch = 14400//batch_size)


      The model does start to train. But, then them model runs out of data points because the iterator will not start over again.







      python tensorflow keras tensorflow-datasets






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 24 at 11:05







      Steve-0 Dev.

















      asked Jan 20 at 0:24









      Steve-0 Dev.Steve-0 Dev.

      187




      187
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54272541%2fdata-type-error-for-tf-data-dataset-from-tensor-slices-cannot-convert-a-tenso%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54272541%2fdata-type-error-for-tf-data-dataset-from-tensor-slices-cannot-convert-a-tenso%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How fix org.hibernate.TransientPropertyValueException

          Updating UILabel text programmatically using a function

          Cloud Functions - OpenCV Videocapture Read method fails for larger files from cloud storage