How can we compare two dataframes in spark scala to find difference between these 2 files, which column ??...
I have two files and I created two dataframes prod1 and prod2 out of it.I need to find the records with column names and values that are not matching in both the dfs.
id_sk is the primary key .all the cols are string datatype
dataframe 1 (prod1)
id_sk | uuid|name
1 |10 |a
2 |20 |b
3 |30 |c
dataframe 2 (prod2)
id_sk | uuid|name
2 |20 |b-upd
3 |30-up|c
4 |40 |d
so I need the result dataframe in the below format.
id|col_name|values
2 |name |b,b-upd
3 |uuid |30,30-up
I did a inner join and compared the unmatched records.
I am getting the result as follows :
id_sk | uuid_prod1|uid_prod2|name_prod1|name_prod2
2 |20 |20 |b |b-upd
3 |30 |30-up |c |c
val commmon_rec = prod1.join(prod2,prod1("id_sk")===prod2("id_sk"),"inner").select(prod1("id_sk").alias("id_sk_prod1"),prod1("uuid").alias("uuid_prod1"),prod1("name").alias("name_prod1"),prod1("name").alias("name_prod2")
val compare = spark.sql("select ...from common_rec where col_prod1<>col_prod2")
scala apache-spark dataframe rdd
add a comment |
I have two files and I created two dataframes prod1 and prod2 out of it.I need to find the records with column names and values that are not matching in both the dfs.
id_sk is the primary key .all the cols are string datatype
dataframe 1 (prod1)
id_sk | uuid|name
1 |10 |a
2 |20 |b
3 |30 |c
dataframe 2 (prod2)
id_sk | uuid|name
2 |20 |b-upd
3 |30-up|c
4 |40 |d
so I need the result dataframe in the below format.
id|col_name|values
2 |name |b,b-upd
3 |uuid |30,30-up
I did a inner join and compared the unmatched records.
I am getting the result as follows :
id_sk | uuid_prod1|uid_prod2|name_prod1|name_prod2
2 |20 |20 |b |b-upd
3 |30 |30-up |c |c
val commmon_rec = prod1.join(prod2,prod1("id_sk")===prod2("id_sk"),"inner").select(prod1("id_sk").alias("id_sk_prod1"),prod1("uuid").alias("uuid_prod1"),prod1("name").alias("name_prod1"),prod1("name").alias("name_prod2")
val compare = spark.sql("select ...from common_rec where col_prod1<>col_prod2")
scala apache-spark dataframe rdd
Possible duplicate of Compare two Spark dataframes
– Andronicus
Jan 20 at 7:18
add a comment |
I have two files and I created two dataframes prod1 and prod2 out of it.I need to find the records with column names and values that are not matching in both the dfs.
id_sk is the primary key .all the cols are string datatype
dataframe 1 (prod1)
id_sk | uuid|name
1 |10 |a
2 |20 |b
3 |30 |c
dataframe 2 (prod2)
id_sk | uuid|name
2 |20 |b-upd
3 |30-up|c
4 |40 |d
so I need the result dataframe in the below format.
id|col_name|values
2 |name |b,b-upd
3 |uuid |30,30-up
I did a inner join and compared the unmatched records.
I am getting the result as follows :
id_sk | uuid_prod1|uid_prod2|name_prod1|name_prod2
2 |20 |20 |b |b-upd
3 |30 |30-up |c |c
val commmon_rec = prod1.join(prod2,prod1("id_sk")===prod2("id_sk"),"inner").select(prod1("id_sk").alias("id_sk_prod1"),prod1("uuid").alias("uuid_prod1"),prod1("name").alias("name_prod1"),prod1("name").alias("name_prod2")
val compare = spark.sql("select ...from common_rec where col_prod1<>col_prod2")
scala apache-spark dataframe rdd
I have two files and I created two dataframes prod1 and prod2 out of it.I need to find the records with column names and values that are not matching in both the dfs.
id_sk is the primary key .all the cols are string datatype
dataframe 1 (prod1)
id_sk | uuid|name
1 |10 |a
2 |20 |b
3 |30 |c
dataframe 2 (prod2)
id_sk | uuid|name
2 |20 |b-upd
3 |30-up|c
4 |40 |d
so I need the result dataframe in the below format.
id|col_name|values
2 |name |b,b-upd
3 |uuid |30,30-up
I did a inner join and compared the unmatched records.
I am getting the result as follows :
id_sk | uuid_prod1|uid_prod2|name_prod1|name_prod2
2 |20 |20 |b |b-upd
3 |30 |30-up |c |c
val commmon_rec = prod1.join(prod2,prod1("id_sk")===prod2("id_sk"),"inner").select(prod1("id_sk").alias("id_sk_prod1"),prod1("uuid").alias("uuid_prod1"),prod1("name").alias("name_prod1"),prod1("name").alias("name_prod2")
val compare = spark.sql("select ...from common_rec where col_prod1<>col_prod2")
scala apache-spark dataframe rdd
scala apache-spark dataframe rdd
edited Jan 20 at 12:09
Brian Tompsett - 汤莱恩
4,2231338101
4,2231338101
asked Jan 20 at 7:11
SHAMPA PRAMANIKSHAMPA PRAMANIK
1
1
Possible duplicate of Compare two Spark dataframes
– Andronicus
Jan 20 at 7:18
add a comment |
Possible duplicate of Compare two Spark dataframes
– Andronicus
Jan 20 at 7:18
Possible duplicate of Compare two Spark dataframes
– Andronicus
Jan 20 at 7:18
Possible duplicate of Compare two Spark dataframes
– Andronicus
Jan 20 at 7:18
add a comment |
1 Answer
1
active
oldest
votes
This is a possible solution:
//to create a joined DF with column "col_name"
//if columns "name" and "uuid" contains different values:
var output = df1.join(df2, df1.col("id_sk")===df2.col("id_sk"))
.where(df1.col("name")=!=df2.col("name") || df1.col("uuid")=!=df2.col("uuid"))
.withColumn("col_name", when(df1.col("name")=!=df2.col("name"), "name")
.otherwise(when(df1.col("uuid")=!=df2.col("uuid"), "uuid")))
//to create the new "col_values" column
//containing concatenated values:
output = output.withColumn("col_values", when(output.col("col_name")==="name", when(df1.col("name")=!=df2.col("name"), concat_ws(",", df1.col("name"), df2.col("name")) ))
.when(output.col("col_name")==="uuid", when(df1.col("uuid")=!=df2.col("uuid"), concat_ws(",", df1.col("uuid"), df2.col("uuid")) )))
output = output.select(df1.col("id_sk"), output.col("col_name"), output.col("col_values"))
+-----+--------+----------+
|id_sk|col_name|col_values|
+-----+--------+----------+
| 2| name| b,b-up|
| 3| uuid| 30,30-up|
+-----+--------+----------+
Note that I don't think this is the best possible solution, but just a starting point (for example what if one row have more than one different column values?).
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54274342%2fhow-can-we-compare-two-dataframes-in-spark-scala-to-find-difference-between-thes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This is a possible solution:
//to create a joined DF with column "col_name"
//if columns "name" and "uuid" contains different values:
var output = df1.join(df2, df1.col("id_sk")===df2.col("id_sk"))
.where(df1.col("name")=!=df2.col("name") || df1.col("uuid")=!=df2.col("uuid"))
.withColumn("col_name", when(df1.col("name")=!=df2.col("name"), "name")
.otherwise(when(df1.col("uuid")=!=df2.col("uuid"), "uuid")))
//to create the new "col_values" column
//containing concatenated values:
output = output.withColumn("col_values", when(output.col("col_name")==="name", when(df1.col("name")=!=df2.col("name"), concat_ws(",", df1.col("name"), df2.col("name")) ))
.when(output.col("col_name")==="uuid", when(df1.col("uuid")=!=df2.col("uuid"), concat_ws(",", df1.col("uuid"), df2.col("uuid")) )))
output = output.select(df1.col("id_sk"), output.col("col_name"), output.col("col_values"))
+-----+--------+----------+
|id_sk|col_name|col_values|
+-----+--------+----------+
| 2| name| b,b-up|
| 3| uuid| 30,30-up|
+-----+--------+----------+
Note that I don't think this is the best possible solution, but just a starting point (for example what if one row have more than one different column values?).
add a comment |
This is a possible solution:
//to create a joined DF with column "col_name"
//if columns "name" and "uuid" contains different values:
var output = df1.join(df2, df1.col("id_sk")===df2.col("id_sk"))
.where(df1.col("name")=!=df2.col("name") || df1.col("uuid")=!=df2.col("uuid"))
.withColumn("col_name", when(df1.col("name")=!=df2.col("name"), "name")
.otherwise(when(df1.col("uuid")=!=df2.col("uuid"), "uuid")))
//to create the new "col_values" column
//containing concatenated values:
output = output.withColumn("col_values", when(output.col("col_name")==="name", when(df1.col("name")=!=df2.col("name"), concat_ws(",", df1.col("name"), df2.col("name")) ))
.when(output.col("col_name")==="uuid", when(df1.col("uuid")=!=df2.col("uuid"), concat_ws(",", df1.col("uuid"), df2.col("uuid")) )))
output = output.select(df1.col("id_sk"), output.col("col_name"), output.col("col_values"))
+-----+--------+----------+
|id_sk|col_name|col_values|
+-----+--------+----------+
| 2| name| b,b-up|
| 3| uuid| 30,30-up|
+-----+--------+----------+
Note that I don't think this is the best possible solution, but just a starting point (for example what if one row have more than one different column values?).
add a comment |
This is a possible solution:
//to create a joined DF with column "col_name"
//if columns "name" and "uuid" contains different values:
var output = df1.join(df2, df1.col("id_sk")===df2.col("id_sk"))
.where(df1.col("name")=!=df2.col("name") || df1.col("uuid")=!=df2.col("uuid"))
.withColumn("col_name", when(df1.col("name")=!=df2.col("name"), "name")
.otherwise(when(df1.col("uuid")=!=df2.col("uuid"), "uuid")))
//to create the new "col_values" column
//containing concatenated values:
output = output.withColumn("col_values", when(output.col("col_name")==="name", when(df1.col("name")=!=df2.col("name"), concat_ws(",", df1.col("name"), df2.col("name")) ))
.when(output.col("col_name")==="uuid", when(df1.col("uuid")=!=df2.col("uuid"), concat_ws(",", df1.col("uuid"), df2.col("uuid")) )))
output = output.select(df1.col("id_sk"), output.col("col_name"), output.col("col_values"))
+-----+--------+----------+
|id_sk|col_name|col_values|
+-----+--------+----------+
| 2| name| b,b-up|
| 3| uuid| 30,30-up|
+-----+--------+----------+
Note that I don't think this is the best possible solution, but just a starting point (for example what if one row have more than one different column values?).
This is a possible solution:
//to create a joined DF with column "col_name"
//if columns "name" and "uuid" contains different values:
var output = df1.join(df2, df1.col("id_sk")===df2.col("id_sk"))
.where(df1.col("name")=!=df2.col("name") || df1.col("uuid")=!=df2.col("uuid"))
.withColumn("col_name", when(df1.col("name")=!=df2.col("name"), "name")
.otherwise(when(df1.col("uuid")=!=df2.col("uuid"), "uuid")))
//to create the new "col_values" column
//containing concatenated values:
output = output.withColumn("col_values", when(output.col("col_name")==="name", when(df1.col("name")=!=df2.col("name"), concat_ws(",", df1.col("name"), df2.col("name")) ))
.when(output.col("col_name")==="uuid", when(df1.col("uuid")=!=df2.col("uuid"), concat_ws(",", df1.col("uuid"), df2.col("uuid")) )))
output = output.select(df1.col("id_sk"), output.col("col_name"), output.col("col_values"))
+-----+--------+----------+
|id_sk|col_name|col_values|
+-----+--------+----------+
| 2| name| b,b-up|
| 3| uuid| 30,30-up|
+-----+--------+----------+
Note that I don't think this is the best possible solution, but just a starting point (for example what if one row have more than one different column values?).
answered Jan 21 at 11:52
pheeleeppoopheeleeppoo
85811420
85811420
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54274342%2fhow-can-we-compare-two-dataframes-in-spark-scala-to-find-difference-between-thes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Possible duplicate of Compare two Spark dataframes
– Andronicus
Jan 20 at 7:18