Finding the x and y coordinates with Weighted K-Nearest Neighborhood algorithm












0















I'm working on Indoor Positioning project using WiFi, I want to use WKNN as the algorithm. I have found similar project from GitHub.This is the part of Algorithm class:



/**
* Calculates the Weighted Average of the K locations that have the shortest
* distances D
*
* @param LocDistance_Results_List
* Locations-Distances pairs sorted by distance
* @param K
* The number of locations used
* @return The estimated user location, or null for error
*/
private static String calculateWeightedAverageKDistanceLocations(ArrayList<LocDistance> LocDistance_Results_List, int K) {
double LocationWeight = 0.0f;
double sumWeights = 0.0f;
double WeightedSumX = 0.0f;
double WeightedSumY = 0.0f;

String LocationArray = new String[2];
float x, y;

int K_Min = K < LocDistance_Results_List.size() ? K : LocDistance_Results_List.size();

// Calculate the weighted sum of X and Y
for (int i = 0; i < K_Min; ++i) {
if (LocDistance_Results_List.get(i).getDistance() != 0.0) {
LocationWeight = 1 / LocDistance_Results_List.get(i).getDistance();
} else {
LocationWeight = 100;
}
LocationArray = LocDistance_Results_List.get(i).getLocation().split(" ");

try {
x = Float.valueOf(LocationArray[0].trim()).floatValue();
y = Float.valueOf(LocationArray[1].trim()).floatValue();
} catch (Exception e) {
return null;
}

sumWeights += LocationWeight;
WeightedSumX += LocationWeight * x;
WeightedSumY += LocationWeight * y;

}

WeightedSumX /= sumWeights;
WeightedSumY /= sumWeights;

return WeightedSumX + " " + WeightedSumY;
}


My question is, can we actually find the x and y coordinates from the algorithm or did i have to do another way such as trilateration to find the coordinates? Or is there any good article or example that i can use?










share|improve this question





























    0















    I'm working on Indoor Positioning project using WiFi, I want to use WKNN as the algorithm. I have found similar project from GitHub.This is the part of Algorithm class:



    /**
    * Calculates the Weighted Average of the K locations that have the shortest
    * distances D
    *
    * @param LocDistance_Results_List
    * Locations-Distances pairs sorted by distance
    * @param K
    * The number of locations used
    * @return The estimated user location, or null for error
    */
    private static String calculateWeightedAverageKDistanceLocations(ArrayList<LocDistance> LocDistance_Results_List, int K) {
    double LocationWeight = 0.0f;
    double sumWeights = 0.0f;
    double WeightedSumX = 0.0f;
    double WeightedSumY = 0.0f;

    String LocationArray = new String[2];
    float x, y;

    int K_Min = K < LocDistance_Results_List.size() ? K : LocDistance_Results_List.size();

    // Calculate the weighted sum of X and Y
    for (int i = 0; i < K_Min; ++i) {
    if (LocDistance_Results_List.get(i).getDistance() != 0.0) {
    LocationWeight = 1 / LocDistance_Results_List.get(i).getDistance();
    } else {
    LocationWeight = 100;
    }
    LocationArray = LocDistance_Results_List.get(i).getLocation().split(" ");

    try {
    x = Float.valueOf(LocationArray[0].trim()).floatValue();
    y = Float.valueOf(LocationArray[1].trim()).floatValue();
    } catch (Exception e) {
    return null;
    }

    sumWeights += LocationWeight;
    WeightedSumX += LocationWeight * x;
    WeightedSumY += LocationWeight * y;

    }

    WeightedSumX /= sumWeights;
    WeightedSumY /= sumWeights;

    return WeightedSumX + " " + WeightedSumY;
    }


    My question is, can we actually find the x and y coordinates from the algorithm or did i have to do another way such as trilateration to find the coordinates? Or is there any good article or example that i can use?










    share|improve this question



























      0












      0








      0








      I'm working on Indoor Positioning project using WiFi, I want to use WKNN as the algorithm. I have found similar project from GitHub.This is the part of Algorithm class:



      /**
      * Calculates the Weighted Average of the K locations that have the shortest
      * distances D
      *
      * @param LocDistance_Results_List
      * Locations-Distances pairs sorted by distance
      * @param K
      * The number of locations used
      * @return The estimated user location, or null for error
      */
      private static String calculateWeightedAverageKDistanceLocations(ArrayList<LocDistance> LocDistance_Results_List, int K) {
      double LocationWeight = 0.0f;
      double sumWeights = 0.0f;
      double WeightedSumX = 0.0f;
      double WeightedSumY = 0.0f;

      String LocationArray = new String[2];
      float x, y;

      int K_Min = K < LocDistance_Results_List.size() ? K : LocDistance_Results_List.size();

      // Calculate the weighted sum of X and Y
      for (int i = 0; i < K_Min; ++i) {
      if (LocDistance_Results_List.get(i).getDistance() != 0.0) {
      LocationWeight = 1 / LocDistance_Results_List.get(i).getDistance();
      } else {
      LocationWeight = 100;
      }
      LocationArray = LocDistance_Results_List.get(i).getLocation().split(" ");

      try {
      x = Float.valueOf(LocationArray[0].trim()).floatValue();
      y = Float.valueOf(LocationArray[1].trim()).floatValue();
      } catch (Exception e) {
      return null;
      }

      sumWeights += LocationWeight;
      WeightedSumX += LocationWeight * x;
      WeightedSumY += LocationWeight * y;

      }

      WeightedSumX /= sumWeights;
      WeightedSumY /= sumWeights;

      return WeightedSumX + " " + WeightedSumY;
      }


      My question is, can we actually find the x and y coordinates from the algorithm or did i have to do another way such as trilateration to find the coordinates? Or is there any good article or example that i can use?










      share|improve this question
















      I'm working on Indoor Positioning project using WiFi, I want to use WKNN as the algorithm. I have found similar project from GitHub.This is the part of Algorithm class:



      /**
      * Calculates the Weighted Average of the K locations that have the shortest
      * distances D
      *
      * @param LocDistance_Results_List
      * Locations-Distances pairs sorted by distance
      * @param K
      * The number of locations used
      * @return The estimated user location, or null for error
      */
      private static String calculateWeightedAverageKDistanceLocations(ArrayList<LocDistance> LocDistance_Results_List, int K) {
      double LocationWeight = 0.0f;
      double sumWeights = 0.0f;
      double WeightedSumX = 0.0f;
      double WeightedSumY = 0.0f;

      String LocationArray = new String[2];
      float x, y;

      int K_Min = K < LocDistance_Results_List.size() ? K : LocDistance_Results_List.size();

      // Calculate the weighted sum of X and Y
      for (int i = 0; i < K_Min; ++i) {
      if (LocDistance_Results_List.get(i).getDistance() != 0.0) {
      LocationWeight = 1 / LocDistance_Results_List.get(i).getDistance();
      } else {
      LocationWeight = 100;
      }
      LocationArray = LocDistance_Results_List.get(i).getLocation().split(" ");

      try {
      x = Float.valueOf(LocationArray[0].trim()).floatValue();
      y = Float.valueOf(LocationArray[1].trim()).floatValue();
      } catch (Exception e) {
      return null;
      }

      sumWeights += LocationWeight;
      WeightedSumX += LocationWeight * x;
      WeightedSumY += LocationWeight * y;

      }

      WeightedSumX /= sumWeights;
      WeightedSumY /= sumWeights;

      return WeightedSumX + " " + WeightedSumY;
      }


      My question is, can we actually find the x and y coordinates from the algorithm or did i have to do another way such as trilateration to find the coordinates? Or is there any good article or example that i can use?







      android algorithm knn indoor-positioning-system






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 20 at 15:23









      Fantômas

      32.6k156389




      32.6k156389










      asked Jan 20 at 14:05









      Enryu Enryu

      64




      64
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54277254%2ffinding-the-x-and-y-coordinates-with-weighted-k-nearest-neighborhood-algorithm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54277254%2ffinding-the-x-and-y-coordinates-with-weighted-k-nearest-neighborhood-algorithm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Homophylophilia

          Updating UILabel text programmatically using a function

          Cloud Functions - OpenCV Videocapture Read method fails for larger files from cloud storage